Podstrona: Publikacje / Wizytówka pracownika PRz

Publikacje

red. Levan Chotorlishvili

1. V. Jandieri, R. Khomeriki, L. Chotorlishvili, K. Watanabe, D. Erni, D. H. Werner, and J. Berakdar
   Phys. Rev. Lett. 127, 127601 – Published 17 September 2021
2. V. Jandier, R. Khomeriki, T. Onoprishvili, D. Erni, L. Chotorlishvili, D. H. Werner and J. Berakdar,
Photonics 8, 250 (2021).
3. P. Kurashvili, L. Chotorlishvili, K. A. Kouzakov, A. I. Studenikin, European Physical Journal C 81,
Article number: 323 (2021).
4. P. Kurashvili, L. Chotorlishvili, A. K. Kouzakov, A. G. Tevzadze, and A. I. Studenikin, Phys. Rev. D
103, 036011 (2021).
5. Xi-guang Wang, Yao-Zhuang Nie, L. Chotorlishvili, Qing-lin Xia, J. Berakdar, and Guang-hua Guo,
Phys. Rev. B 103, 064404 (2021).
6. D. Eilmsteiner, Xi-guang Wang, L. Chotorlishvili, S. Paischer, M. Hoffmann, P. Buczek A. Ernst, J.
Phys.: Condens. Matter 33, 185803 (2021).
7. I. Tralle, L. Chotorlishvili, P. Zieba, Physics Letters A 385 126963, (2021).
8. H. Verma, L. Chotorlishvili, J. Berakdar, S. Kumar Mishra, Quantum Information Processing 20,
Article number: 54 (2021).
9. X.-G. Wang, L. Chotorlishvili, N. Arnold, V. K. Dugaev, I. Maznichenko, J. Barnas, P. Buczek, S.
Parkin and A. Ernst, Phys. Rev. Lett. 125, 227201 (2020).
10. X.-G. Wang, L. Chotorlishvili, V. K. Dugaev, A. Ernst, I. Maznichenko, N. Arnold, Chenglong Jia, J.
Berakdar, I. Mertig, J. Barnas, npj Computational Materials, volume 6, Article number: 140 (2020).
11. L. Chotorlishvili, Z. Toklikishvili, X.-G. Wang, V. K. Dugaev, J. Barnaś, and J. Berakdar, Phys. Rev.
B 102, 024413 (2020).
12. A. K. Singh, L. Chotorlishvili, S. Srivastava, I. Tralle, Z. Toklikishvili, J. Berakdar, and S. K. Mishra,
Phys. Rev. B 101, 104311 (2020).
13. L. Chotorlishvili, C. L. Jia, D. A. Rata, L. Brandt, G. Woltersdorf, and J. Berakdar, Phys. Status
Solidi B 257, 1900750 (2020).
14. D. Maroulakos, L. Chotorlishvili, D. Schulz, J. Berakdar, Symmetry 12 (7), 1078 (2020).
15. Z. Toklikishvili, L. Chotorlishvili, S. Stagraczyński, V. K. Dugaev, A. Ernst, J. Barnas, and J. Berakdar,
Phys. Rev. B 100, 235419 (2019).
16. L. Chotorlishvili, A. Gudyma, J. Wätzel, A. Ernst, and J. Berakdar, Phys. Rev. B 100, 174413 (2019).
17. Xi-guang Wang, L. Chotorlishvili, Guang-hua Guo, and J. Berakdar, Phys. Rev. Applied 12, 034015
(2019).
18. K. A. Kouzakov, L. Chotorlishvili, J. Wätzel, J. Berakdar, A. Ernst, Phys. Rev. A 100, 022311 (2019).
19. Xi-guang Wang, L. Chotorlishvili, Guang-hua Guo, C.-L. Jia, and J. Berakdar, Phys. Rev. B 99,
064426 (2019).
20. L. Chotorlishvili, Z. Toklikishvili, X.-G. Wang, V. K. Dugaev, J. Barnas, and J. Berakdar, Phys. Rev.
B 99, 024410 (2019).
21. M. Melz, J. Wätzel, L. Chotorlishvili, and J. Berakdar, Phys. Rev. B 98, 104407 (2018).
22. M. Fechner, A. Sukhov, L. Chotorlishvili, C. Kenel, J. Berakdar, N. A. Spaldin, Phys. Rev. Materials
2, 064401 (2018).
23. A. F. Schäffer, L. Chotorlishvili, I. V. Maznichenko, A. Ernst, K. Dörr, I. Mertig, and J. Berakdar,
APL Materials 6, 076103 (2018).
24. L. Chotorlishvili, X. G. Wang, Z. Toklikishvili, and J. Berakdar, Phys. Rev. B 97, 144409 (2018).
25. X. G. Wang, L. Chotorlishvili, G. H. Guo, and J. Berakdar, J. Appl. Phys. 124, 073903 (2018).
26. Xi-guang Wang, L. Chotorlishvili, Guang-hua Guo, J. Berakdar, Physics Letters A 382, 1100 (2018).
27. L. Chotorlishvili , P. Zieba, I. Tralle and A. Ugulava, J. Phys. A: Mathematical and Theoretical 51,
035004 (2017).
28. P. Kurashvili, K. A. Kouzakov, L. Chotorlishvili, and A. I. Studenikin, Phys. Rev. D 96, 103017 (2017).
29. X.-G. Wang, L. Chotorlishvili, G. H. Guo, and J. Berakdar, J. Phys. D: Appl. Phys. 50, 495005 (2017).
30. H. Verma, L. Chotorlishvili, J. Berakdar, and S. K. Mishra, Europhysics Letters 119, 30001 (2017).
31. S. Stagraczyński, L. Chotorlishvili, M. Schüler, M. Mierzejewski, and J. Berakdar, Phys. Rev. B 96,
054440 (2017).
32. X.-G. Wang, L. Chotorlishvili, and J. Berakdar, Front. Mater. 4, 19 (2017).
33. M. Schüler, L. Chotorlishvili, M. Melz, A. Saletsky, A. Klavsyuk, Z. Toklikishvili, and J. Berakdar,
New Journal of Physics 19, 073016 (2017).
34. X. G. Wang, Z. X. Li, Z. W. Zhou, Y. Z. Nie, Q. L. Xia, Z. M. Zeng, L. Chotorlishvili, J. Berakdar,
and G. H. Guo, Phys. Rev. B 95, 020414(R) (2017).
35. X.-G. Wang, A. Sukhov, L. Chotorlishvili, C. L. Jia, G.-H. Guo, and J. Berakdar, J. Phys.: Condens.
Matter 29, 095804 (2017).
36. L. Chotorlishvili, S. K. Mishra, S. Stagraczynski, M. Schüler, A. R. P. Rau, J. Berakdar, J. Phys. B:
At. Mol. Opt. Phys. 50, 055007 (2017).
37. R. Khomeriki, L. Chotorlishvili, I. Tralle, and J. Berakdar, Nano Letters 11, 7290 (2016).
38. S. Stagraczyński, L. Chotorlishvili, V. K. Dugaev, C.-L. Jia, A. Ernst, A. Komnik, and J. Berakdar,
Phys. Rev. B 94, 174436 (2016).
39. X.-G. Wang, L. Chotorlishvili, Guo G.-H., A. Sukhov, V. K. Dugaev, J. Barnas, and J. Berakdar,
Phys. Rev. B 94, 104410 (2016).
40. M. Azimi, M. Sekania, S. K. Mishra, L. Chotorlishvili, Z. Toklikishvili, and J. Berakdar, Phys. Rev. B
94, 064423 (2016).
41. L. Chotorlishvili, M. Azimi, S. Stagraczynski, Z. Toklikishvili, M. Schüler, and J. Berakdar, Phys. Rev.
E 94, 032116 (2016).
42. A. Sukhov, L. Chotorlishvili, A. Ernst, X. Zubizarreta, S. Ostanin, M. Mertig, E. K. U. Gross, and J.
Berakdar, Scientific reports. 6, 24411 (2016).
43. L. Chotorlishvili, S. R. Etesami, J. Berakdar, R. Khomeriki, Jie Ren, Phys. Rev. B 92, 134424 (2015).
44. L. Chotorlishvili, Z. Toklikishvili, S. R. Etesami, V. Dugaev, J. Barnas, J. Berakdar, J. Magn. Magn.
Math. 396, 254 (2015).
45. S. R. Etesami, L. Chotorlishvili, J. Berakdar, Appl. Phys. Lett. 107, 132402 (2015).
46. R. Khomeriki, L. Chotorlishvili, B. A. Malomed, and J. Berakdar, Phys. Rev. B 91, 041408(R) (2015).
47. R. Khomeriki, L. Chotorlishvili and J. Berakdar, New Journal of Physics 17, 013030 (2015).
48. A. Sukhov, C.-L. Jia, L. Chotorlishvili, P. P. Horley, D. Sander, and J. Berakdar, Phys. Rev. B 90,
224428 (2014).
49. S. K. Mishra, L. Chotorlishvili, A. R. P. Rau, and J. Berakdar, Phys. Rev. A 90, 033817 (2014).
50. S. R. Etesami, L. Chotorlishvili, A. Sukhov, and J. Berakdar, Phys. Rev. B 90, 014410 (2014).
51. W. Hübner, G. Lefkidis, C. D. Dong, D. Chaudhuri, L. Chotorlishvili, and J. Berakdar, Phys. Rev. B
90, 024401 (2014).
52. M. Azimi, L. Chotorlishvili, S. K. Mishra, T. Vekua, W. Hübner and J. Berakdar, New Journal of
Physics 16, 063018 (2014).
53. A. Sukhov, L. Chotorlishvili, P. P. Horley, C-L Jia, S. K. Mishra and J. Berakdar, J. Phys. D: Appl.
Phys. 47, 155302 (2014).
54. L. Chotorlishvili, A. Ernst, V. K. Dugaev, A. Komnik, M. G. Vergniory, E. V. Chulkov, and J.
Berakdar, Phys. Rev. B 89, 075103 (2014).
55. M. Azimi, L. Chotorlishvili, S. K. Mishra, S. Greschner, T. Vekua, and J. Berakdar, Phys. Rev. B 89,
024424 (2014).
56. L. Chotorlishvili, Z. Toklikishvili, V. K. Dugaev, J. Barnaś, S. Trimper, and J. Berakdar, Phys. Rev.
B 88, 144429 (2013).
57. L. Chotorlishvili, R. Khomeriki, A. Sukhov, S. Ruffo, and J. Berakdar, Phys. Rev. Lett. 111, 117202
(2013).
58. L. Chotorlishvili, D. Sander, A. Sukhov, V. Dugaev, V. R. Vieira, A. Komnik, J. Berakdar, Phys. Rev.
B 88, 085201 (2013).
59. L. Chotorlishvili, A. Sukhov, S. Wimberger, and J. Berakdar, Fluctuation and Noise Letters 12,
1350003 (2013).
60. L. Chotorlishvili, Z. Toklikishvili, A. Sukhov, P. P. Horley, V. K. Dugaev, V. R. Vieira, S. Trimper,
and J. Berakdar, J. Appl. Phys. 114, 123906 (2013).
61. L. Chotorlishvili, Z. Toklikishvili, A. Komnik, J. Berakdar, Physics Letters A 377, 69 (2012).
62. L. Chotorlishvili, Z. Toklikishvili, A. Komnik and J. Berakdar, J. Phys. Cond. Matter 24, 255302
(2012).
63. A. Ugulava Z. Toklikishvili, S. Chkhaidze, R. Abramishvili, and L. Chotorlishvili, J. Math. Physics
53, 062101 (2012).
64. L. Chotorlishvili, A. Ugulava, G. Mchedlishvili, A. Komnik, S. Wimberger, J. Berakdar, J. Phys. B:
At. Mol. Opt. Phys. 44, 215402 (2011).
65. L. Chotorlishvili, J. Berakdar, Z. Toklikishvili, S. Wimberger, Phys. Rev. A 84, 013825 (2011).
66. L. Chotorlishvili, J. Berakdar, Z. Toklikishvili, A. Komnik, Phys. Rev. B 83, 184405 (2011).
67. A. Ugulava, G. Mchedlishvili S. Chkhaidze L. Chotorlishvili, Phys. Rev. E 84, (046606) (2011).
68. L. Chotorlishvili J. Berakdar, Z. Toklikishvili, J. Phys. A 44, 165303 (2011).
69. L. Chotorlishvili, P. Schwab, Z. Toklikishvili, J. Berakdar, Phys. Rev. B 82, 014418 (2010).
70. L. Chotorlishvili, P. Schwab, Z. Toklikishvili, V. Skrinnikov, Phys. Lett. A 374, 1642 (2010).
71. N. Metwally, L. Chotorlishvili, V. Skrinnikov, Physica A 389, 5332 (2010).
72. L. Chotorlishvili, A. Ugulava, Physica D 239, 103 (2010).
73. L. Chotorlishvili, P. Schwab, Z. Toklikishvili, J. Berakdar, J. Computational and Theoretical
Nanoscience 7, 2430 (2010).
74. L. Chotorlishvili, P. Schwab, J. Berakdar, J. Phys. Cond. Matter 22, 036002 (2010).
75. L. Chotorlishvili, Z. Toklikishvili, J. Berakdar, J. Phys. Cond. Matter 21, 356001 (2009).
76. L. Chotorlishvili, Z. Toklikishvili, J. Berakdar, Phys. Lett. A 373, 231 (2009).
77. L. Chotorlishvili, V. Skrinnikov, Phys. Lett. A 372, 761 (2008).
78. L. Chotorlishvili, A. Ugulava, K. Nickoladze, G. Mchedlishvili, Int. J. Mod. Phys. B 22, 381 (2008).
79. A. Ugulava, L. Chotorlishvili, Z. Toklikishvili, Low Temp. Phys. 34, 418 (2008).
80. R. Khomeriki, A. Ugulava, L. Chotorlishvili, J. Opt. Soc. of Am. B 25, 1265 (2008).
81. L. Chotorlishvili, Z. Toklikishvili, Eur. Phys. J. D 47, 433 (2008).
82. L. Chotorlishvili, Z. Toklikishvili, Phys. Lett. A 372, 2806 (2008).
83. L. Chotorlishvili, J. Berakdar, J. Phys. B: At. Mol. Opt. Phys. 40, 3757 (2007).
84. L. Chotorlishvili, A. Ugulava, T.Gvarjaladze, S. Chckaidze, Mod. Phys. Lett. B 21, 415 (2007).
85. A. Ugulava, L. Chotorlishvili, Z. Toklikishvili, A. Sagaradze, Low. Temp. Phys. 32, 915 (2006).
86. A. Ugulava, L. Chotorlishvili, K. Nickoladze, Phys. Rev. E 71, 056211 (2005).
87. A. Ugulava, L. Chotorlishvili, K. Nickoladze, Phys. Rev. E 70, 026219 (2004).
88. L. L. Chotorlishvili, V. M. Ckhvaradze, Low. Temp. Phys. 30, 739 (2004).
89. A. Ugulava, L. Chotorlishvili, K. Nickoladze, Phys. Rev. E 68, 026216 (2003).
90. L. Zakharov, L. Chotorlishvili, T. Buishvili, Low. Temp. Phys. 28, 580 (2002).
91. L. L. Chotorlishvili, Acta Physica Slovaca 52, 35 (2002).
92. L. L. Chotorlishvili, R. L. Lepsveridze, B. M. Shergelashvili, G. I. Khudjadze,
Acta Physica Slovaca 52, 447 (2002).
93. L. L. Chotorlishvili, Acta Physica Slovaca 52, 65 (2002).
94. L. Zakharov, L. Chotorlishvili, T. Buishvili, Low. Temp. Phys. 28, 580 (2002).
95. L. Chotorlishvili, I. Tutberidze, and G. Kakabadze, Low. Temp. Phys. 27, 511 (2001).
96. L. L. Chotorlishvili, G. R. Kakabadze, Low. Temp. Phys. 26, 62 (2000).
97. L.L. Chotorlishvili, T. L. Buishvili, M. G. Tsanava, Low. Temp. Phys. 26, 537 (2000).
98. L. Zakharov, L. Chotorlishvili, A. Tugushi, Low. Temp. Physics, 24, 17 (1998).
99. N. Giorgadze, L. Zakharov, A. Tugushi, L. Chotorlishvili, Low. Temp. Phys. 24, 875 (1998).

Scrambling and quantum feedback in a nanomechanical system

15-02-2022 r.
, red. Levan Chotorlishvili

The question of how swiftly entanglement spreads over a system has attracted vital interest. In this regard, the out-of-time-ordered correlator (OTOC) is a quantitative measure of the entanglement spreading process. Particular interest concerns the propagation of quantum correlations in the lattice systems, e.g., spin chains. In a seminal paper of Roberts et al. (J. High Energy Phys. 03:051, 2015), the concept of the OTOC’s radius was introduced. The radius of the OTOC defines the front line reached by the spread of entanglement. Beyond this radius operators commute. In the present work, we propose a model of two nanomechanical systems coupled with two nitrogen-vacancy (NV) center spins. Oscillators are coupled to each other directly, while NV spins are not. Therefore, the correlation between the NV spins may arise only through the quantum feedback exerted from the first NV spin to the first oscillator and transferred from the first oscillator to the second oscillator via the direct coupling. Thus, nonzero OTOC between NV spins quantifies the strength of the quantum feedback. We show that NV spins cannot exert quantum feedback on classical nonlinear oscillators. We also discuss inherently quantum case with a linear quantum harmonic oscillator indirectly coupling the two spins and verify that in the classical limit of the oscillator, the OTOC vanishes.

Nasze serwisy używają informacji zapisanych w plikach cookies. Korzystając z serwisu wyrażasz zgodę na używanie plików cookies zgodnie z aktualnymi ustawieniami przeglądarki, które możesz zmienić w dowolnej chwili. Więcej informacji odnośnie plików cookies.

Akceptuję